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J. Phys.: Condm. Matter 6 (1994) 824523257. Printed in the UK 

Norm-conserving and ultrasoft pseudopotentials for 
first-row and transition elements 

G Kresse and J Hafner 
Institut fur "heoretische Physik. Technische Universig Wien, Wiedner HauptsW 8-10. 
A-lo40 Wien. Austria 

Received 18 April 1994 

Abstract The consmction of accurate pseudopotentials with good convergence propexties for 
the first-row and vansition elements is discussed. We show that by combining an improved 
description of the pseudowavefunction inside the cut-off radius with the concept of ultrasoft 
pseudopotentials introduced by Vanderbill optimal compromise between hansferability and 
plane-wave convergence can be achieved. With the new pseudopotentials, basis sets with no 
more than 75-100 plane waves per atom m sufficient to reproduce the results obtained with 
the most accurate nom-canserving pseudopotentials. 

1. htroduction 

The theoretical study of the properties of materials via electronic-structure calculations is 
currently an extremely active field of research. Much of the recent progress in this area 
is due to the success of the local-density approximation (LDA) to the density-functional 
theory of many-electron systems [ l ,  21. One of the most efficient techniques for petfonning 
self-consistent electronic-structure and total-energy calculations within the LDA is based 
on the pseudopotential description of the electron-ion interaction and the use of plane- 
wave basis sets [3, 41. In particular, the development of the Car-Paninello molecular- 
dynamics technique 151, the use of efficient conjugate-gradient techniques for the variational 
determination of the ground state [6, 71, or the use of methods for iterative diagonalization 
of large matrices 18, 9, 101 allows for the investigation of systems with a large number 
of inequivalent atomic sites in the unit cell. However, the use of these techniques is still 
difficult for materials such as the first-row elements (B, C, N, 0, ...) and the 3d transition 
metals because a large number of plane waves is necessary to describe the 'localized' 2p, 
respectively 3d, valence states of these materials. Therefore many attempts [ l l ,  12, 131 have 
been made to generate smooth pseudopotentials optimized for the convergence of the plane- 
wave expansion of the total energy. Quite generally it was found that the cut-off energy for 
the plane-wave expansion (i.e. the highest kinetic energy of a plane wave) may be reduced 
by increasing the cut-off radius R, where the pseudowavefunction is matched to the all- 
electron wavefunction. Increasing R, however reduces the accuracy and hhsferability, and 
the difficulty consists in matching these two conflicting requirements. 

It is 
now generally ageed that it is most convenient to construct the pseudowavefunctions 
directly. For a continuous pseudopotential, the pseudowavefunctions must be continuously 
differentiable at least twice at the cut-off radius Rc, i.e., 

(1) 
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Several strategies for optimization of pseudopotentials have been proposed. 

n = 0, 1.2. ... 
= @F(rP'l ,=R, @k( Ir=& PS r ) ( n )  
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where @/?(r) is the solution of the radial Schmdinger equation for a specific energy B 
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and @&?(T) = a,(T)@:E(r)/r. Second, the charge enclosed within the cut-off radius 
R, must be the same for the pseudowavefunctions and all-electron wavefunction (norm- 
conservation consiraint) 

An ansatz for the pseudowavefunction @E(.) must have a minimum of four adjustable 
parameters in order to satisfy conditions (1) and (3). Additional parameters [ I l .  121 
are introduced with the aim of improving the convergence of an expansion of the 
pseudowavefunctions in a basis of plane waves. The pseudopotential can be obtained by an 
inversion of the radial Schrodinger equation. The non-local factorized Kleinman-Bylander 
(KB) pseudopotential operator 1141 is simply given by 

with 

IXlmr) = -(T + VI,, - (5) 

where V,, is a local potential which is-in principle-arbitrary. In practice, the local 
part of the pseudopotential is of considerable importance. A reasonable choice avoids the 
appearance of so called ‘ghost states’ beneath the reference energies E (the existence of 
‘ghost states’ is thoroughly discussed in [15]) and helps to reduce the strength [I51 

of the non-local part of the pseudopotential. 
An entirely new pseudopotential concept has recently been proposed by Vanderbilt 11-51, 

This new concept is characterized by two main points. (i) More than one reference energy 
E per quantum state I is allowed. This guarantees an excellent nansferability over a wide 
energy range even for larger cut-off radii R,. Similar ideas have been developed by Blochl 
[17]. If a generalized norm-conservation condition is satisfied, the new pseudopotential 
operators are Hermitian (see below). (ii) Dropping the norm-conservation constraint leads 
to a new class of pseudopotentials, for which a generalized eigenvalue problem has to be 
solved. Because the norm-conservation constraint does not apply, a charge-density deficit 
between the pseudowavefunctions and exact wavefunctions exists. This deficit is described 
by localized augmentation functions. A close connection between these augmentation 
charges and the overlap operator in the generalized eigenvalue problem exists. 

Vanderbilt’s scheme allows us to construct ‘ultrasoft’ pseudopotentials requiring not 
more than 50-100 plane waves per atom. even for the difficult cases of the 2p and 3d 
elements. In the present paper we first present a revised Rappe, Rabe, Kaxiras, and 
Joannopoulos (RRU) scheme, which can be used to construct rather soft norm-conserving 
pseudopotentials. In section 4 we discuss the extension of this scheme to ultrasoft Vanderbilt 
pseudopotentials, and demonstrate the success of our scheme for some difficult elements. 
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2. Optimized nom-conserving pseudopotentials 

As we mentioned in section 1. the direct construction of a pseudowavefunction is a 
convenient way to construct a pseudopotential. In agreement with RRKJ, we think that 
spherical Bessel functions form the most natural basis set to expand the pseudowavefunctions 
$f(r) within the cut-off radius: 

with qj chosen such that 

and that there are (i - 1)  zeros within r e Rc. This basis set has the distinct advantage of 
being orthogonal and (for n + CO) complete. Due to the fitting of the logarithmic derivative 
of the spherical Bessel functions one needs a minimum of only three terms to satisfy the 
requirements of nom conservation (3) and continuity of the first two derivatives of the 
pseudowavefunction at Rc (1). RRKI proposed to add a variable number of terms (up to 
n = 10) and to exploit the additional parameters to minimize the kinetic energy contained 
in the Fourier components of @Ps beyond a certain cut-off Q,, (with E,, = (?i2/2m)Qznt). 
i.e. 

where @:(q) is defined as 

In practice it turns out that it is more convenient to define a convergence limit A E  for 
the kinetic energy and to determine Qcnc such that AEbn(Qcut) < AE.  The resulting 
pseudopotential is optimized for a basis set containing all plane waves with G e QCut. 

RRKJ proposed to use a large set of spherical Bessel functions (up to n = 10). However, 
it turns out that this leads to an oscillatory behaviour of the pseudopotential in real space 
without really reducing AEan(Qeur). Therefore Lin and co-workers [18] proposed to use 
only n = 4, i.e. the minimum number of Bessel functions that allows for the minimization of 
the kinetic energy. In this case Qcur is chosen as QCut = q4 since it is effectively controlled 
by the highest wavenumber of the Bessel functions. In practice we find that the optimization 
of the kinetic energy is unnecessary and that n = 3 leads to a smooth pseudowavefunction 
with excellent convergence properties. Only for very small cut-off radii (R ,  smaller than 
the position of the first maximum of the all-electron wavefunction) was a fourth term in 
the expansion (7) sometimes necessary to guarantee a nodeless pseudoorbital. However we 
found that such small cut-offs were not necessary to construct high-quality pseudopotentials. 

The restriction to only three Bessel functions also makes the generation of 
pseudopotentials for unbound states unproblematic. As it stands the kinetic-energy criterion 
applies only to bound states which can be expanded in a sum of Bessel functions. It is in 
principle possible to rewrite the kinetic-energy criterion for a finite interval [0, Rheck]. 
However we found that this generalization is numerically cumbersome, and does not 
allow for a reasonable optimization of pseudowavefunctions. Without optimization the 
construction of pseudopotentials for unbound states is straightforward. This is important in 
many cases, e.g. for the construction of d pseudopotentials for B-group elements (no bound 
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d state exists for atomic configurations). In this paper we use the atomic configuration of the 
free atom (s2pz for C and Ge, s2p4 for 0, and d'Os' far Cu) as the reference configuration 
for the calculation of the pseudopotential. The kinetic-energy criterion is not only useful for 
optimizing the pseudowavefunction, but also helps to estimate the necessary energy cut-off 
for a total-energy calculation. Therefore we calculate the necessary cut-offs Qcu, for a set 
of energy errors A E  = 10 mliyd, ..., 0.1 mRyd as a routine task for any pseudopotential. 
This can be done in a numerically stable way by transforming the wavefunctions $Ps(r) to 
their reciprocal-space representation $Ps(q) using for instance fast Fourier transformations. 
In general the errors A T  of the kinetic energy evaluated in reciprocal space 
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are smaller than lom5 Ryd. 
In figure 1 we show the validity of the kinetic-energy criterion. The markers show the 

convergence of a total-energy plane-wave calculation using a cut-off of E,, for (a) diamond 
and (b) face-centred-cubic copper for different pseudopotentials. The lines represent the 
errors expected from the kinetic-energy criterion using the atomic pseudowavefunctions. A 
similar agreement was found for all elements considered up to now. In general the cut-off 
E,,, = @Z/2m)Q2u, should be large enough to reduce the kinetic-energy error AEu, to 
1 mRyd; for very accurate calculations the cut-off E,,, might be chosen so that the error is 
smaller that 0.1 &yd. 

Table 1. Comparison of the accuracy and convergence properties of various types of s-elenmn 
pseudopotential for Ge. The first wlumn lists the cut-off radius R. neceuiuy to achieve a 
wmparable accuracy (measured in term of the logarithmic derivatives of the wavefunction, 
ulculated at R = 2.4 au and energies *0.5 Ryd below and above the reference energy, columns 
two and three). The fourth and fifth columns list the cut-off energies EW necessary to converge 
the kinetic energy to within A&. c 1 mRyd (0.1 mRyd). See text. 

Potential R, (au) A E ( 4 . 5 )  (Ryd) 

BHS 125 -0,0030 
VAN 1.3 -0.0026 
TM 225 -0.0034 
mu3 2.5 -0.0023 
F X M  2.2 -0.0026 
PAW6 2.0 -0.0029 

AE(0.5) (Ryd) 1 mRyd 0.1 mRyd 

-0.04057 23 32 
-0.00055 16 31 
-0.OLlO65 24 41 
-0.00047 15 18 
-0.00048 15 29 
-0.00054 15 91 

Tables 1-3 compare the accuracy and transferability of different types of 
pseudopotential: Bachelet, Hamann, and Schliiter (BHS [19]), Vanderbilt (VAN [20]), 
Troullier-Martins (TM [12]) potentials and RRKJ potentials with n = 3, 4,6 were considered. 
n = 3 corresponds to no optimization of the kinetic energy, optimization for n = 4,6 was 
done for an error A E  = 1 mRyd (for n = 4 this criterion is almost equivalent to the 
criterion of Lin et al [18]). Accuracy and transferability are measured in terms of the 
errors in the logarithmic derivative at an energy 0.5 Ryd above and below the reference 
energy (for copper 0.2 Ryd because the d band is relatively narrow). The convergence 
is characterized by the cut-off energies E,, necessary to converge the kinetic energy of 
the atomic pseudowavefunction up to an error of 1 mRyd, respectively 0.1 mRyd (i.e. 
AEun(Qsut) < 1 (0.1) mRyd). As characteristic examples we chose the s pseudopotential 
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Figure 1. Dlustntion of thekineticenergy-convergence 
criterion: convergence of a total-energy plane-wave 
calculation using normconserving pseudopotentials (a) 
for diamond and (b) for facecentred-cubic copper. 
Squares are results for BHS pseudopotentials ((a) R, = 
0.85 a", (b) Rc = 1.05 a"), circles for the RRKJ3 
pseudopotential ((a) R, = 1.6 au, (b) R, = 2.0 au), 

(b) R, = 1.9 au). The full lines represent the errors 
expected from the kinetioenergy criterion evaluated 
using atomic pseudowavefunctions (errors for one s 
electron and three p electrons were tlken into account 
for diamond, for copper errors corresponding to ten d 
electrons were calculated). The energy differences AE 
are calculated relative to the total energy obtained with 
Ecuc = 3000 eV. 

triangles for the RRKJ6 pseudopotendal, ((a) Rc = 1.4 aU, 

- 2  - 1  0 1 2 
E I R y I  

Figure 2. Logarithmic derivatives q ( E )  for Cu at 
R = 2.7 au. Full lines, calculated for the all- 
electron potmtial; dashed lines, (a) calculated for 
norm-conserving Vanderbilt pseudopotentid with WO 
reference energies for d states, (b) calculated for 
the us pseudopotential (see text for description of 
pseudopotentials). 

of Ge (a 'classical pseudopotential element'), the p pseudopotential of C, and the d 
pseudopotential of Cu (two examples for the difficult cases of the first-row and transition 
elements). In all cases we find the following. 



8250 G Kresse and J Hafner 

Table 2. Same as table 1. but for p-electron pseudopotential in C. Logarithmic derivatives are 
calculated at R = 1.9 au. 

E m  (Ryd) 

Potential R, (au) AE(-0.5)  (Ryd) AE(0.5)  (Ryd) 1 mRyd 0.1 mRyd 

BHS 0.85 0.0024 0.0040 70 89 
VAN 1.0 0.0020 0.0040 so 65 
TM 1.7 0.0025 0.0041 40 67 
RRKl3 1.6 0.0024 0.0040 40 48 
R W 4  1.5 0.0024 0.0041 39 70 
R W 6  1.4 0.0024 0.0041 38 202 

Table 3. Same as table 1,  but for d-electmn pseudopotential in Cu. Errors in the logarithmic 
derivatives are calculated  at^ R = 2.8 au and *0.2 Ryd from the reference energy. 

E m  (RYd) 

Potential RE (au) AE(-0.2) (Ryd) AE(0.2) (Ryd) 1 mRyd 0.1 mRyd 

BHS 1.05 0.0157 0.0296 73 106 
VAN 1.3 0.0165 0.0304 80 97 
TM 2.3 0.0153 0.0284 ,61 102 
mu3 2.0 0.0157 0.0297 54 80 
RRKJJ 1.95 0.0148 0.0282 46 ,94 
Q.RKJ6 1.9 0.0152 0.0287 45 155 

~ 

(i) The BHS and VAN pseudopotentials require very small cut-off radii in order to ensure 
transferability (small AE(k0.5)),  and this leads to relatively large cut-off energies. 

(ii) The TM pseudopotential allows the largest cut-off radii, but the improvement of 
convergence is modest. Only for C does the TM pseudopotential reach the same quality as 
the RRKJ3 pseudopotential. 

(iii) In conjunction with the RRKJ pseudopotentials it is also possible to use relatively 
large cut-off radii. The largest cut-off radii are allowed within the RRKJ3 scheme. Inclusion 
of more than the minimum number of Bessel functions requires a smaller R,. 

We would like to point out again that the RRKJ4 and RRKJ6 pseudopotentials were 
optimized for AE~,(Q,,J < 1 mRyd. But even for this accuracy the necessary energy 
cut-offs are only a few Ryd smaller than without optimization. For any accuracy other than 
1 mRyd the necessary energy cut-offs are larger than for the RRKJ3 scheme (in tables 1-3 
this is only demonstrated for 0.1 mRyd, but this also holds for 10 mRyd). 

The disappointing performance of the TM and RRKJ4, 6 schemes has a common origin: 
the additional degrees of freedom lead to a @ps(r) that deviates very rapidly from the all- 
electron wavefunction @*€(r) for r < Rc. For the TM scheme the problem is slightly 
reduced due to the requirement of continuous higher derivatives at R,. The kinetic-energy 
optimization simply transfers kinetic energy to Q-components smaller than QCut. but at the 
same time reduces the transferability. In addition, the optimization creates a pseudopotential 
which converges slowly beyond Qcut (see the long tail of AE for the RRKR pseudopotentials 
in figure 1). 

Therefore in all cases the RRKJ scheme with the minimum number of parameters works 
best. However, at comparable transferability, the cut-off energies required for the C p and 
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Cu 3d pseudopotentials are larger than those required for Ge s potentials by a factor of three 
(C) to four (Cu). 

3. Inclusion of more than one reference energy 

Vanderbilt (and independently Blochl) [16, 171 proposed to use a second reference 
energy in the construction of the factorized pseudopotential. This can be done in the 
following way. For each quantum number 1 and each reference energy E one constructs a 
pseudowavefunction q4Ps satisfying ( I )  and (3). For each pseudowavefunction one defines a 
function xi as in equation (5) 

(12) 
where i is a shorthand notation for quantum numbers 1, m and the reference energy E ,  
i = (lm. E ) .  It is now possible to define a basis ,6i which is dual to @, 

IXi) = -(T + v,, - € ) I @ )  

(Pi 147) = sij (13) 

via 

M) = x(B-')ijIxj) (14) 
j 

and 

Bi, = (@yIXi). (15) 
The non-local factorized pseudopotential operator can be written as 

It may be shown that Bij and therefore the pseudopotential VNL are Hermitian if the 
pseudowavefunctions 

(17) 

fulfill a generalized norm-conservation constraint 
AE AE 

Qij = (4j l@i ) - C@yl@) = 0 

or explicitly (assuming spherical symmetry) 

This step considerably improves transferability and allows for increased cut-off radii without 
compromising accuracy. Although the step is simple and the necessary changes in a total- 
energy program are negligible, only a few authors [21,22] tried to work out norm-conserving 
Vanderbilt pseudopotentials. The reason is that the additional constraint 

Q l e . ~  = 0 (19) 

for E # E' might be cumbersome to implement. Therefore Chou [21] constructed a 
Hermitian approximation to the Vanderbilt pseudopotentials, in which the generalized norm- 
conservation condition need not apply. Using this approximation it is possible to construct 
the pseudowavefunctions for all reference energies independently requiring only Q i e ~ , e  = 0. 
Morrison and co-workers [22] showed that Chou's algorithm was hard to implement 
for Ag; nevertheless they were able to construct an exact nom-conserving Vanderbilt 
pseudopotential for Ag. In our work we generally also neglect the additional constraint 
(19). The weaker condition Qle,~* = 0 leads to a non-Hermitian Bij, but in conjunction 
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with our new minimal-pseudopotential-generation scheme (RRKJ3) the differences in Bij- Bji 
are generally small, i.e. if we simply use the Hermitian matrix 
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instead of Bij, the logarithmic derivatives are accurate over a wide energy range. For Cu 
and C the second reference energy reduces the error in the logarithmic derivatives almost 
to zero. Figure 2(a) illustrates this for Cu. We created a scalar-relativistic pseudopotential 
for the atomic configuration 3d104s'. For the s and p components the cut-off was set to 
Rc = 2.7 au. For the d pseudopotential two reference energies (one 50 mRyd above the 
bound state) and a radial cut-off of & = 2.0 au were used. We chose the s component as 
the local part of the pseudopotential operator. The radial cut-off of re = 2.1 au seems to 
be relatively large (especially if we consider the bond length of the dimer Rb = 4.2 au), 
but as shown in figure 3 the logarithmic derivatives are still exact at R = 2.0 au, i.e. 
well inside the cut-off radius. This once again demonstrates that the R R K I ~  pseudopotential 
reproduces the scattering properties of the all-electron potential rather accurately even at 
small distances. 

Figure 4(a) shows the logarithmic derivatives for C. The pseudopotential was created for 
the atomic configuration 2s21p2. In this case we used two reference energies for the s and 
the p states and one for the d component (second reference energy for s and p wavefunctions 
50 mRyd above the bound state). Cut-off radii for all pseudowavefunctions are RE = 1.2 au. 
As local potential we used the d pseudopotential. 

4. Ultrasoft Vanderbilt pseudopotentials 

The second step of the Vanderbilt scheme consists in relaxing the norm-conservation 
constraint (18J9).  The 'ultrasoft' (us) pseudowavefunctions @? must satisfy only equation 
(1). Therefore the pseudopotential operator is no longer Hermitian; but it is possible to 
transform the standard eigenvalue problem 

(21) 

(22) 

(T + v,, + VNL - €)I@) = 0 

(T + v,, + P L  - ES)I@) = 0 

to a generalized eigenvalue problem 

with a Hermitian overlap operator 

S = 1 + C Q i j I B j ) ( B i I  
i .  j 

and a Hermitian pseudopotential operator 

where 

(25) D . .  - B . .  
r j  - zj + € i Q i j .  

It can be shown that the logarithmic derivative is not only correct at each reference 
energy ej but also for small variarions around each reference energy ci. The transition 
to the generalized eigenvalue problem also changes the electron density involved in a self- 
consistent calculation [23] 

n(r) = Cf.l@*(r)I2+Cfn(@~lBj)(Bil@~)Qij(~) (26) 
n n J j  
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Figure 3. Logarithmic derivatives q ( E )  for Cu at 
R = 2.0 au. Full lines, calculated for the all-elecmn 
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Figure 4. Logarithmic derivatives * ( (E)  for C at 
R = 1.6 au. Full lines. calculated for the all- 
electron potential, dashed lines, (a) calculated for 
normconserving Vanderbilt pseudopotential with two 
reference energies for s and p states, (b) calculated 
for the us pseudopotential (see text for description of 
pseudopotentials). 

where the augmentation functions Qij(r) are defined as 

Qij(r) = @/'(T)@?(T)* - @ ~ S ( T ) @ ~ ( T ) * .  

In order to calculate the augmentation part of the charge density (second term in equation 
(26)) efficiently, it is convenient to replace the Qjj(r) by appropriate pseudizised functions 
Q","r). We do this by replacing the all-electron wavefunctions @AE in equation (27) by 
their norm-conserving counterparts q5r (a different scheme was proposed in [16, 231). The 
ultrasoft pseudopotential constructed this way possesses almost the same properties as the 
norm-conserving pseudopotential. 

Figure 2(b) shows the logarithmic derivatives for a us Cu pseudopotential. In 
comparison to figure 2(a) only the d component was changed. For the ultrasoft d 
pseudopotential we used a cut-off of R c , d  = 2.1 au for both reference energies; the 
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augmentation functions were calculated using the norm-conserving pseudowavefunctions 
for Raug = 2.0 au. 

Figure 4(b) demonstrates the quality of the US pseudopotential €or C. We used a cut-off 
radius of Rc = 1.8 au for all components; the augmentation functions were calculated using 
the norm-conserving pseudowavefunctions for Raug = 1.2 au. As local potential we chose a 
norm-conserving d pseudopotential with R, = 1.8 au. As can be seen from figures 2(b) and 
4(b) the quality of the logarithmic derivatives is excellent for both US potentials. However, 
there is a second source of errors which cannot be assessed this way. The problem arises 
if the potential is transferred to a different chemical environment. In the Vanderbilt scheme 
this error is mainly controlled by the quality of the augmentation functions (in our case 
by the quality of the norm-conserving pseudowavefunctions from which the augmentation 
functions are constructed). In order to check the accuracy of OUT pseudopotentials we 
calculated the equilibrium properties of crystalline phases. For copper we also performed a 
calculation for the dimer, using a simple cubic supercell of 10 A. 

The calculations for the crystal and the supercell containing the dimer have been 
performed using the VASP (Vienna ab initio simulation program) 18,241 code which performs 
a variational solution of the Kohn-Sham equations using conjugate-gradient techniques. To 
describe the wavefunctions, a small energy cut-off Ecut is necessary. The action of the 
local potential on the wavefunction and the smooth part of the charge density (first term 
in equation (26)) can be calculated using a relatively coarse fast-Fourier-transform (FFT) 
grid which must contain all wavevectors up to G = 2GCu1. Non-locality is handled in the 
real-space projection scheme [2.5]. A finer grid is necessary to represent the augmentation 
charges (second term in equation (26)) and for the calculation of the Hartree and exchange- 
correlation potential. All operations involving QQ(T) are performed on this second grid 
in real space. The total time spent on the fine grid scales linearly with the number of 
ions and is negligible compared with the computational costs necessary for one conjugate 
gradient step on the wavefunctions. One of the consequences of the introduction of ultrasoft 
pseudopotentials is that the gradients of the free energy with respect to the orbitals 4" are 
now given by 

G Kresse and J Hafner 

lo) = (H - 6 J ) l C n )  (28) 

(note that (28) holds only if the Hamiltonian is diagonal in the subspace spanned by @n). The 
gradient defined this way is no longer orthogonal to the orbitals 4" i.e. (&lSlgn) # 0. We 
resolve this problem by preconditioning the the search vector and explicitly orthogonalizing 
the vector after preconditioning 

In our work we use the preconditioning functions K of [6]. The preconditioned gradient gi  
is used in conjunction with a sequential band-by-band optimization of the the expectation 
value of the Hamiltonian (@,JHI&)/(@&) [9]. After running over all bands (including 
some empty bands), a subspace diagonalization is performed, the Fermi energy and new 
partial occupancies are calculated, and the charge density n(r) and the potential V ( T )  are 
updated. We found that the convergence speed does not suffer by the introduction of the 
overlap operator; in general the the number of steps required to calculate the ground state 
is the same as for norm-conserving pseudopotentials. 

Tables 4 and 5 show results for different Cu pseudopotentials. For FCC Cu we used 
a mesh of 4 x 4 x 4 MonWlorst-Pack [26] h-points in the irreducible wedge of the FCC 
Brillouin zone. This mesh is not sufficient to get accurate structural energy differences, but 
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Table 4. Lanice constant w. equilibrium volume NI, bulk modulus En and cohesive energy Ec 
(relative to non-spin-polarized atom) for face-centredsubic Cu, and bonding length re. cohesive 
energy D., and vibrational frequency or for a CUI dimer using pseudopotentials which differ 
in the description of the d component. Rc,d is the cut-off for the norm-conserving, respectively 
uluasofl, d wavefunctions and Ecut the cut-off energies necessary to converge the kinetic energy 
of the atomic pseudowavefunction to within A& c 1 mRyd. 

NC' USb USb USb 

%.a (au) 2.0 2.0 2.3 2.7 
ENI (Ryd) 50 25 18 14 

an (A) 3.542 .3.542 3.542 3.542 
611 (Mbar) 1.80 1.80 1.79 1.78 
E, (fV) -4.69 -6.68 -4.68 -4.67 
rc (A) 2.17 2.175 2.185 
4 (ev) 3.19 3.19 3.19 
ru, (cm-') 308 303 314 

a Norm-conserving pseudopotential using two d reference energies as described in section 3. 

pseudowavefunctions for Rulg = 2.0 au. 

vo (9 11.11 11.11 11.11 11.11 

Ultrasoft pseudopotential: augmentation functions were calculated from the norm-conserving 

Table 5. Same as table 4 for ultrasoft pseudopotentials (&,d = 2.7 au, Ecvt = 12 Ryd) varying 
the precision of the augmentation functions (i.e. using different cut-offs Rrvg for the norm- 
conserving d wavefunctions); in addition results for an accurate non-factorized pseudopotential 
are shown (NC, Rc,a = 1.1 au). 

@U) 

2.0 1.6 1.2 NC 

vn (A3) 1 1 . 1 1  11.13 11.19 11.21 
og (A) 3.542 3.544 3.550 3.552 
Bo (Mbar) 1.78 1.72 1.69 1.70 
EC (eV) -4.67 -4.62 -4.58 -4.61 
re (A) 2.185 2.18 2.185 4 (ev) 3.19 3.19 3.17 
oc (cm-') 314 306 315 

it is good enough to compare different pseudopotentials. In table 4 we van'ed the cut-off 
for the us d pseudowavefunctions. As can be seen the results remain almost unchanged 
a radial cut-off of up to Rc.d = 2.7 au-leading to a cut-off energy of only 14 Ryd- 
is definitely possible. As a second check we changed the precision of the augmentation 
functions (table 5): using a very accurate augmentation function (Raug = 1.2 au) changes 
the cohesive energy by approximately 0.1 eV and the equilibrium volume by I%, which 
is a small but still reasonable error. Using different pseudopotential cut-off radii Rc,d in 
conjunction with a varying R,, leads to the same result. Table 5 shows in addition the 
results obtained with a non-factorized norm-conserving RRKJ3 pseudopotential with a very 
small cut-off radius (leading to a cut-off energy E,,, _Y 2000 eV). Because of the high 
accuracy of the pseudopotential and the very large basis set, and because errors that could 
be introduced by Kleinman-Bylander factorization are avoided, this is the most accurate 
(but expansive) calculation that can be done within this framework. 
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The results for the dimer show a similar trend the precision of the augmentation 
functions is less important in the dimer, mainly because the environment does not change 
very much on going from the atom to the dimer. Once again the changes with the cut-off 
for the us d pseudowavefunctions are very small. 

Table 6. Lattice constant ao, equilibrium volume Vo, bulk modulus Bo and cohesive energy 
E, (relafive to the spin-polan’red atom) for diamond for different pseudopotentials. R, is the 
cut-off for the pseudowavefunctions, E,, the cut-off energies necessary to converge the kinetic 
energy of the atomic pseudowavefunction to within A&, c 1 mRyd. 

NCa USb USb USb 

R, (au) 1.2 1.4 1.6 1.8 
E m ( W )  60 33 25 20 
Vo (A’) 5.49 5.49 5.49 550 
no CA) 3.521 3,527 3.529 3.530 
EO (Mbar) 4.60 4.60 4.61 4.61 
E, (eV) -9.03 -9.03 -9.03 -9.01 

a Normsonserving pseudopotential using two s and p reference energies and one d reference 
energy (see also section 3). 

Ultrasoft pseudopoten@% augmentation functions were calculated using d e  nomanserving 
pseudowavefunctions for Rang = 1.2 an; d pseudopotential is norm conserving and used as the 
local potential. 

Table 7. Same as table 6 for ultrasoli pseudoporentials (Rc = 1.4 au) varying the precision 
of the augmentation functions (i.e. using different cut-offs Raup for the norm-conserving 
wavefunctions). 

Raug (U) 

1.0 1.2 1.4 

Vu (A’) 5.50 5.49 5.46 
cq (A) 3.530 3527 3.525 
BO (Mbar) 4.60 4.60 4.59 
E, (eV) -9.024 -9.03 -9.04 

Tables 6 and 7 show results for different C pseudopotentials for diamond. The 
calculations were done using a 4 x 4 x 4 k-point grid in the irreducible wedge of the 
Brillouin zone. All pseudopotentials give very similar results: a cut-off of R,, = 1.2 au 
for the augmentation functions and a pseudopotential cut-off radius of R, = 1.8 au are 
sufficient to produce an accurate C~pseudopotential; the cut-off energy is only 20 Ryd. A 
more extensive test for the C pseudopotentials will be published elsewhere [27]. 

5. Conclusion 

We have reconsidered the construction of efficient and accurate pseudopotentials for the 
first-row and transition elements. We show that for norm-conserving pseudopotentials an 
optimal compromise between transferability and plane-wave convergence can be achieved 
within a modified R W  scheme. The introduction of two reference energies allows us to 
improve the transferability of the norm-conserving potentials. A substantial reduction of 
the cut-off energy for the planewave expansion results from the introduction of ultrasoft 
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potentials without norm conservation (the pseudowavefunctions in the core region being 
described by the modified RRKJ scheme). The combination of all three features leads to 
accurate ultrasoft pseudopotentials for 2p and 3d elements requiring 75-100 plane waves 
per atom. C and Cu have been mated here as representative examples, but similar results 
have been obtained for the Zp elements Li, B, N, and 0, for the 3d elements V, Cr, Mn, 
Fe, Co. and Ni, and for some 4d elements. This opens the way to ub initio molecular- 
dynamics simulations for these difficult materials. First results for liquid Cu and V have 
been published recently [28]. 
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